Approximate multi-degree reduction of Q-Bézier curves via generalized Bernstein polynomial functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves

A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...

متن کامل

degree reduction of disk wang-bézier type generalized ball curves

a disk wang-bézier type generalized ball curve is a wang-bézier type generalized ball curve whose control points are disks in a plane. it can be viewed as a parametric curve with error tolerances. in this paper, we discuss the problem of degree reduction of disk wang-bézier type generalized ball curve, that is, bounding disk wang-bézier type generalized ball curves with lower degree disk wang-b...

متن کامل

Rational Bézier Curves Approximated by Bernstein-Jacobi Hybrid Polynomial Curves

In this paper, we propose a linear method for C approximation of rational Bézier curve with arbitrary degree polynomial curve. Based on weighted least-squares, the problem be converted to an approximation between two polynomial curves. Then applying Bernstein-Jacobi hybrid polynomials, we obtain the resulting curve. In order to reduce error, degree reduction method for Bézier curve is used. A e...

متن کامل

Optimal multi-degree reduction of Bézier curves with G2-continuity

In this paper we present a novel approach to consider the multi-degree reduction of Bézier curves with G2-continuity in L2norm. The optimal approximation is obtained by minimizing the objective function based on the L2-error between the two curves. In contrast to traditional methods, which typically consider the components of the curve separately, we use geometric information on the curve to ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2020

ISSN: 1687-1847

DOI: 10.1186/s13662-020-02871-y